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Introduction. 

 

Despite the ongoing development of numerical modeling tools, multiple linear regression models 

(MLRM) remain the most reliable and relied-upon tool for prediction of water table fluctuations in the 

operational implementation of the County of Inyo/City of Los Angeles Long Term Groundwater 

Management Plan.  The County made extensive use of the MLRM during the recent disputes over the 

operation of the McNally canals and the Annual Operations Plan for 2001-2002, and will likely continue 

rely on them in the future; therefore, it is desirable to update, reevaluate, extend, and improve the 

MLRM.   

 

The theory and development of the MLRM is described in Harrington (1998; 1999) and references 

therein.  The general strategy of the MLRM is to use regional groundwater pumping and runoff as 

driving variables to predict fluctuations in the water table elevation.  One of the primary questions 

regarding the MLRM is: what are the appropriate driving variables to use in the model?  Pumping and 

runoff must be spatially and temporally averaged prior to being input into the model, and the optimum 

choice of averaging scale is not obvious at the outset of model development.  For example, the first 

regression MLRM scheme applied to Owens Valley groundwater pumping utilized valley-wide pumping 

as a driving variable (Williams, 1978), whereas the current MLRM use wellfield pumping.  In general, 

the more localized the input variables are, the greater the effort required to assemble the data and 

implement the model; therefore the optimum scale for averaging the input variable is the largest scale 

that does not degrade model performance.  For example, splitting the runoff variable up so that each 

MLRM used runoff in a few specific streams near the indicator well would require considerably greater 

data assembly effort for little or no additional model performance, because of the very high correlation 

between flow in any single stream and Owens Valley runoff as a whole.  Conversely, the MLRM can be 
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expected to perform better if there is a real and direct hydrological linkage between the indicator well 

and the driving variables.  Clearly, if spatial averaging scales are too large, processes contributing to the 

averaged driving variable do not affect fluctuations in the indicator well.   

 

The objectives of this report are to explore alternative renditions of the driving variables in the MLRM, 

develop additional indicator wells to extend the spatial coverage of the set of indicator wells, and 

explore alternatives for assessing the accuracy of the MLRM.  This report documents several recent 

efforts the County Water Department has made to improve and extend the MLRM.  These efforts 

specifically are: 

 

1. Use of inflows into the McNally canals as a predictor variable in Laws area MLRM. 

 

2. Implementation and comparison of various methods of assessing uncertainty in MLRM 

predictions. 

 

3. Investigation of methods for generating autocorrelated lognormal time series that reproduce the 

statistics of Owens Valley runoff for use in multi-year MLRM simulations. 

 

4. Development of MLRM for wells useful for predicting water table fluctuations at permanent 

vegetation monitoring sites. 

 

Each of these efforts is somewhat independent of the others, therefore each is described in a separate 

section. 

 

 

Use of inflows into McNally canals as a predictor variable in Laws models. 

 

Owens Valley runoff has been used as a predictor variable in the MLRM because it correlates well with 

recharge from stream channels and surface water conveyances, direct recharge from precipitation, 

artificial recharge operations, and ungaged mountain front recharge.  Owens Valley runoff is more easily 

measured than recharge, so it serves as a spatially lumped variable that captures the deviation from 

normal that can be expected in recharge for a given year.  The Laws wellfield is an exception to this 

reasoning because of its location east of the Owens River at the foot of the White Mountains.  Other 

LADWP wellfields in the Owens Valley lie on or at the toe of alluvial fans issuing from the Sierra 

Nevada, and most recharge to those wellfields comes from snowmelt runoff recharging through stream 

channels or on the range-front slopes.  In contrast, Laws lies on the other side of valley from the 

snowmelt recharge sources from the Sierra Nevada, and due to the rain shadow of the Sierra Nevada, the 

White Mountains receive a small fraction of the seasonal snow fall that the Sierra Nevada receives.  

Therefore, the natural recharge mechanisms that act in other LADWP wellfields are not as effective in 

the Laws area.  The comparatively low amount of natural recharge on the east side of the valley is 

documented in the Green Book, Appendix B, Tables 1, 3, 4, and 5.  The primary sources of recharge for 

the Laws wellfield are seepage losses from the canal system, percolating irrigation, and artificial 

recharge due to water spreading activities conducted by LADWP, rather than through natural recharge 

(Jorat, 2001).  Thus motivated, the work presented here sought to determine whether there is another 

variable than Owens Valley runoff that could be used to better represent recharge in the Laws area.   

 

The largest water conveyances in the Laws area are the Upper and Lower McNally canals, which are 

used to supply water from the Owens River to spreading areas and irrigated land in the Laws, and to 
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convey pumped water from production wells to irrigated land and mitigation projects.  The canals 

undergo substantial channel losses when operated, and their operation is often associated with other 

recharge generating activities (Green Book, 1990; Danskin, 1998); therefore, their flows are likely to be 

well correlated to recharge and water table fluctuations in the Laws area. 

 

The data used to develop MLRM for the Laws area using the McNally canals are given in Appendix 1.  

Diversions into the McNally canals from the Owens River are correlated to Owens Valley runoff due to 

LADWP's historical operational tendency to use of the canals for conveying surface water to Laws area 

irrigation leases and water spreading basins during non-drought conditions (Figure 1).  From a statistical 

point of view, it is clear that use of either Owens Valley runoff or diversions into the McNally canals as 

driving variables in MLRM would produce viable models; however, two considerations suggest that 

diversions into the McNally canals are preferable to Owens Valley runoff.  First, as discussed above, the 

McNally canals have a more direct physical relationship to Laws area recharge mechanisms than Owens 

Valley runoff.  Second, if the relationship between runoff and canal diversions depicted in Figure 1 

should change (e.g., if LADWP were to decide to diminish its use of the canals regardless of runoff 

conditions), then the correlation between Owens Valley runoff and Laws area recharge would no longer 

be as it has been in the past, rendering the MLRM invalid.  In the event that operational management of 

the McNally canals should change, it is desirable that the driving variables used in the MLRM be 

causally related to processes effecting water table fluctuations. 

 

Owens Valley runoff, percent of normal
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Figure 1.  Owens Valley percent of normal runoff plotted against diversions into the McNally canals 

from the Owens River. 
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Table 1 compares the statistics for regressions performed using Owens Valley runoff and diversions 

from the Owens River into the McNally canals for each Laws area indicator well.  Appendix 1 contains 

the data.  In every case, the coefficient of determination is higher and the standard error lower when 

diversions into the canals is used as the driving variable, which indicates that the MLRM have more 

predictive power when implemented with canal diversions as the driving variable related to recharge.  

Table 1 reveals a modest, but consistent, improvement in the regression statistics when canal diversions 

are used.  If management decisions were to further diminish the correlation between runoff and canal 

operations, the improvement in modeling capability obtained through use of canal diversions will likely 

be greater than that shown in Table 1.  Regression coefficients for the MLRM based on McNally canal 

diversions are given in Table 2. 

 

Table 1.  Comparison of regression statistics (R
2
,coefficient of determination; SE, standard error of the 

regression) for Laws wellfield MLRM using Owens Valley runoff and diversions from the Owens River 

into the McNally canals. 

  Owens Valley runoff diversions into McNally canals 

Well N R
2
 SE R

2
 SE 

107T 17 0.894 2.419 0.942 1.786 

436T 22 0.880 1.454 0.946 0.972 

438T 25 0.799 1.951 0.880 1.508 

490T 25 0.890 1.216 0.936 0.928 

492T 20 0.901 3.417 0.938 2.693 

493T 24 0.896 4.243 0.949 2.964 

 

Table 2.  Regression coefficients for MLRM for Laws area wells using diversions from Owens River 

into the McNally canals as driving variable (Appendix 1). 

 

Well 

 

Intercept 

 

Initial water level 

 

Laws pumping 

Diversions from Owens 

River into McNally canals 

107T 1940.7 0.5299 -0.0003347 0.00024434 

436T 1813.3 0.5573 -0.0001308 0.00014643 

438T 1929.0 0.5327 -0.0001166 0.00014452 

490T 1065.0 0.7377 -0.0000505 0.00012906 

492T 2045.1 0.5010 -0.0005186 0.00027338 

493T 1505.5 0.6334 -0.0003439 0.00041436 

 

 

Implementation and comparison of various methods of assessing uncertainty in the MLRM 

predictions . 

 

Analytical methods exist for assessing the uncertainty of  MLRM predictions, but the validity of these 

methods requires that the data and residuals generated by the model fully meet the assumptions 

underlying MLRM (Kufs, 1992).  In practice, adherence to the assumptions is never perfect; therefore, it 

is desirable to compare alternative methods of assessing uncertainty in the MLRM predictions to the 

classical analytical method.  Two uncertainty intervals were examined: the "confidence interval" which 

is the interval within which the mean value (i.e. regression line, or, in more than two dimensions, the 

regression hyperplane) of the dependent variable falls, and the "prediction interval" which is the interval 

within which a single prediction of the dependent variable falls.  The uncertainty encapsulated by the 

confidence interval is related to uncertainty in the regression coefficients; the uncertainty encapsulated 

by the prediction interval is related to both the regression coefficients and the tendency for data to not lie 
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exactly on the regression hyperplane.  If the regression coefficients were known exactly, the confidence 

interval would be zero, but the prediction interval would still be non-zero unless all the data lay exactly 

on the regression hyperplane.  The tendency for the data to not lie exactly on the regression hyperplane is 

due to both measurement error and the fact that the model only approximates the actual hydrologic 

system.  Harrington (1998) presented a method of using bootstrap resampling and Monte Carlo 

simulation to evaluate uncertainty in MLRM predictions.  Here, three methods of evaluating the 

uncertainty in MLRM predictions are compared; one method is the classical analytical method (Holder, 

1985), the other two are based on bootstrap resampling (Draper and Smith, 1988).   

 

The analytical prediction interval is given by  

 
2/112 ))')(1(ˆ)(2/1,4(ˆ xXXxnth    

 

where ĥ  is the water level predicted by the regression, t(n-4,1-) is the t statistic for n-4 degrees of 

freedom at 1-/2 significance, n is the number of data,  is the confidence level of the prediction 

interval, 2̂ is the variance of the regression residuals, x is the data for the estimate, and X is the matrix 

of observations given by  

 



















nnn rph

rph

rph


222

111

 

 

where hi, pi, and ri are the initial water table elevation, wellfield pumping, and Owens Valley runoff for 

year i.  As discussed above, diversions into the McNally canals are substituted for runoff in Laws 

wellfield MLRM. 

 

Bootstrap prediction intervals are generated by random resampling and repeated calculation of the 

regression model based on the resampled data.  The first method, bootstrapping the residuals, is 

implemented by computing the regression model from the original data set, and then resampling with 

replacement the resulting residuals.  The resampled residuals are then added to values predicted by the 

model and the model coefficients are recalculated.  Repeating this process generates as many 

"realizations" of the model as desired, and the statistics of the set of realizations characterizes the 

confidence interval.  The prediction interval then is derived by adding a normally distributed random 

number with zero mean and standard deviation equal to the standard error of the regression to each 

realization. 

 

The second method of bootstrapping, bootstrapping the data, is carried out by resampling the predictor 

variables from the original data set to form new simulated data sets, and recomputing the regression 

coefficients from the new data sets.  Again, the statistics of the set of realizations characterizes the 

confidence interval, and the prediction interval is derived by adding a normally distributed random 

number with zero mean and standard deviation equal to the standard error of the regression to each 

realization. 

 

To compare the three methods of deriving prediction intervals, the three methods described above were 

applied to two representative indicator wells, well 493T (Laws wellfield, 24 years of data) and well 418T 
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(Taboose Aberdeen wellfield, 27 years of data).  Well 493T responds rapidly to pumping stress and 

recharge from the McNally canals, and fluctuations in its hydrograph range over span of forty feet.  Well 

418T fluctuates over a smaller range, about thirteen feet, and has a smoother hydrograph than well 493T.  

For each well, the three methods of computing prediction intervals were implemented and applied to the 

regression data set, generating a prediction interval for the modeled value for each year of the period of 

record.  The bootstrap methods were applied using five thousand realizations.  Table 3 lists the mean and 

standard deviation of the prediction intervals for each method and each well.  Also given is the 

confidence interval calculated by the analytic method. 

 

It can be concluded from Table 3 that all three methods produce similar prediction intervals, suggesting 

that the indicator well regression data meets the assumptions of linear regression sufficiently to use the 

analytic method to compute prediction and confidence intervals.  For both wells, the analytic prediction 

interval was slightly greater than either of the bootstrap methods, the greatest difference being between 

the analytic method and the bootstrap residual method for well 493T of about 6%.  These are 

encouraging results, in that all these methods produce similar enough prediction intervals that any one of 

them is sufficient to compute uncertainty estimates for MLRM predictions. 

 

The confidence interval for the analytic method is about one-third of the prediction interval, which 

shows that the greater share of uncertainty in model predictions is due to scatter about the regression 

hyperplane, not due to uncertain or unstable regression coefficients.  It is not surprising, then, that the 

three methods produce similar uncertainty estimates, because the largest part of the prediction 

uncertainty is embodied in the standard error of the regression, which makes a similar contribution to the 

prediction interval in each of the three methods.   

 

Table 3.  Mean and standard deviation of uncertainty intervals derived by analytic methods, 

bootstrapping residuals, and bootstrapping data.  Standard deviation in parentheses. 

 Prediction intervals Confidence interval 

Well Analytic Bootstrap residuals Bootstrap data Analytic 

493T 6.554(0.206) 6.193(0.208) 6.400(0.313) 2.111(0.579) 

418T 1.313(0.028) 1.264(0.035) 1.263(0.058) 0.406(0.088) 

 

 

 

Investigation of methods for generating autocorrelated lognormal time series. 

 

In order to predict water table fluctuations over time intervals of several years, it is necessary to provide 

the MLRM with groundwater pumping and Owens Valley runoff for the duration of the modeled time 

interval.  Pumping is a variable that is controlled by management decisions.  Therefore, it is most 

appropriately supplied to the MLRM deterministically, and is thus specified exactly in a given 

simulation.  Owens Valley runoff, however, is unknown and varies stochastically.  To provide the 

MLRM with realistic renditions of runoff for multiple years, it is desirable simulate Owens Valley runoff 

for the period of the simulation in a way that reproduces the important statistics of the historical runoff 

time series.  For this application, the important statistics are the mean, standard deviation, skewness, and 

one-lag coefficient of autocorrelation.  Seasonality of runoff can be neglected, because the MLRM are 

implemented with one-year time steps, and decadal-scale periodicities are beyond the concern of the one 

to four year simulations contemplated here. 
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Owens Valley runoff for each runoff year 1935 through 1999 were used to calculate the statistics of the 

runoff time series (Appendix 2).  Figure 2 shows the histogram and Figure 3 shows the normal 

probability plot of the Owens Valley runoff data set.  Table 4 gives the summary statistics for the runoff 

data set. 
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Table 4.  Summary statistics for the Owens Valley runoff data set. 

Mean  426205 AF 

Standard deviation 155403 AF 

Median 393362 AF 

Skewness 0.7775 

One-lag autocorrelation coefficient 0.1416 

 

 

 
 

Figure 2.  Histogram of Owens Valley runoff. 
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Figure 3.  Probability plot of Owens Valley runoff. 

 

It is clear from Table 4 and Figures 2 and 3 that the distribution of Owens Valley runoff is skewed to the 

right and should be treated as a non-normal distribution.  Typically, runoff time-series can be modeled as 

lognormally distributed (Haan, 1977), and that appears to be a valid strategy for these data. 

 

Runoff data also typically serially correlated due to climatological and watershed processes that cause 

the previous years' precipitation conditions to contribute to any given year's runoff.  For example, 

remnant snowfields and moist soil following a year of high precipitation may cause the following year to 

have more runoff than would be expected based on precipitation alone, or climatological teleconnections 

such as the El Nino/Southern Oscillation may persist for more than one year.  Figure 4 shows a 

correlogram for Owens Valley runoff.  A correlogram is calculated by computing the correlation 

coefficient between a data set and the same data set off-set by one, two, three, etc. years, e.g., the 

correlogram at lag = 10 is the correlation coefficient for runoff separated by ten years.  The most 

pertinent feature of Figure 4 for regression modeling is how rapidly the correlogram declines in the first 

few years.  The correlogram for lag = 1 is 0.1416; for lag = 2, it is 0.2106; and for lag = 3, it is -0.0071, 

suggesting that the degree of serial correlation in the runoff time series is modest.  To further evaluate 

the importance of serial correlation, simple linear regression of the runoff data versus the same data off-

set by one year was performed.  The slope of the regression line was significant at a p = 0.2643 level (for 

normally distributed data with a one lag autocorrelation coefficient equal to zero, there is probability p 

that the slope would be this great or greater).  This suggests that autocorrelation of the runoff data is not 

a critical concern, but may be present; therefore, a method is presented here for generating autocorrelated 

time series of lognormally distributed runoff data.  The apparent periodicity in the correlogram suggests 

some sort of cyclical climatological process with a period of twelve to fifteen years.  The MLRM are 

applied to forecast windows of up to five years, so the observed periodicity does not affect this 

application. 
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Figure 4.  Correlogram for Owens Valley runoff. 

 

To generate autocorrelated time series of runoff, it is assumed that the statistics of the time series are 

stationary.  This assumption is necessary to estimate population parameters from the data set sample 

statistics, however it should be recognized that alterations such as land use change, changes in water 

management, or climate change could render this assumption invalid.  The simplest model for simulating 

Owens Valley runoff that fulfills the requirements of reproducing the mean, variance, skewness, and first 

order autocorrelation coefficient is the first-order Markov process, given by 

 

)1(1))(1(
2

11 xxiixi txxxx     

 

where xi is the time series being simulated, x is the mean of the time series, )1(x  is the one-lag 

autocorrelation coefficient, ti+1 is a standard normal random deviate, and x  is the standard deviation of 

the time series.  Implementation of the first order Markov process requires estimation of the mean, 

standard deviation, and one-lag autocorrelation coefficient, and random generation of standard normal 

deviates. 

 

Application of the first-order Markov model to log transformed data requires a correction so that the 

model preserves the statistics of the original data rather than the statistics of the log transformed data.  

The correction has the form 

 

)ln(  ii xy  

 

and the correction factor is chosen such that the statistics of the original data set are reproduced.  

Following the procedures cited by Haan (p. 295, 1977) yields  = -186298 AF.  Monte Carlo simulations 

were done to test the performance of the correction.  Five thousand values were generated using 

normally distributed runoff, lognormally distributed runoff with the correction, and lognormally 
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distributed runoff without the correction.  The statistics of these simulations were computed and 

compared to the statistics of the original data (Table 5).  The mean values and standard deviations of all 

of the simulated runoff time series compare well with the original data, however only the corrected 

simulation reproduces the both skewness and first order correlation coefficient of the original data. 

 

Table 5.  Statistics of original and simulated Owens Valley runoff. 

 Original data Simulated with 

normal distribution 

Simulated with lognormal 

distribution and correction 

Simulated with 

lognormal distribution 

Mean (AF) 426205 422356 427524 429828 

Standard dev. (AF) 155402 156603 156822 157184 

Skewness 0.77748 -0.05652 0.74668 1.0860 

One-lag 

autocorrelation 

0.141614 0.14208 0.14220 0.24684 

 

 

 

Development of additional MLRM for wells for predicting water table fluctuations at permanent 

monitoring sites. 

 

In order to develop the ability to predict water table fluctuations at vegetation monitoring sites, it is 

desirable to develop MLRM for wells near monitoring sites, but proximity or relation to vegetation 

monitoring sites has not heretofore been one of the criteria for choosing wells for MLRM development 

(Harrington, 1998; 1999).  Data and regression diagnostics for several wells that appear favorably 

situated for developing this capability are presented below (Table 6) and in Appendix 3.  The wells were 

chosen by comparing the potential indicator well hydrograph to the monitoring well at the vegetation 

monitoring site; if the hydrographs were parallel for their common period of record, the well was 

considered useful for predicting fluctuations at the monitoring site.  Additional work, not presented here, 

is necessary to relate water table fluctuations at the indicator wells to fluctuations at the vegetation 

monitoring site.  Regression models were developed for the following wells: V271 (Laws wellfield), 

572T (Big Pine wellfield), 507T (Thibaut Sawmill wellfield), and V097 (Bairs George wellfield). 

 

LADWP wells that have a "V" designation are usually deep monitoring wells.  Use of V-designated 

wells in the Laws and Bairs George wellfields is justified by the close correspondence between the 

hydrographs of the potential indicator well and nearby shallow wells situated at the vegetation 

monitoring site.  Well V271 is over 195 ft deep according to LADWP's well database, however its well 

log indicates it was drilled to 113 ft and screened from 91 to 111 ft.  Well V097 was drilled to 321 ft and 

its screened interval is unknown. 
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Table 6.  Regression diagnostics and coefficients for additional indicator wells. 

Well N R
2
 SE (ft) Regression coefficients 

V271 28 0.871 4.380 Intercept 2360.1 

    Init. head 0.42443 

    Pumping -0.0004362 

    Canal flows 0.0003883 

572T 14 0.861 1.990 Intercept 2171.6 

    Init. head 0.44770 

    Pumping -0.0001993 

    OV runoff 0.00001179 

507T 22 0.929 0.469 Intercept 1082.0 

    Init. head 0.71572 

    Pumping -0.0001489 

    OV runoff 0.0000013071 

V097 28 0.871 3.239 Intercept 2686.3 

    Init. head 0.29496 

    Pumping -0.0025717 

    OV runoff 0.000010172 

 

 

Conclusions and Recommendations 

 

1.  Use of the McNally canals as a predictor variable provides both better model performance and a more 

sound hydrological basis for Laws area MLRM.  Diversions from the Owens River into the upper and 

lower McNally canals should be used as a predictor variable in these models in place of Owens Valley 

runoff. 

 

2.  Prediction intervals based on analytical methods and those based on bootstrap resampling provide 

similar estimates of uncertainty in MLRM predictions.  Either method is suitable for evaluation of 

MLRM results.  The choice of method can be left to convenience of the modeler, for example in MLRM 

applications where Monte Carlo methods are used to simulate runoff for multiple years into the future, it 

may be easier to implement bootstrap based methods; alternatively, in simple applications of the MLRM 

to make predictions one year into the future, use of the analytical method will provide faster model run 

times and perhaps be more familiar to other parties examining the model results. 

 

3.  For multiple year MLRM simulations, the method presented here for generating time-series of Owens 

Valley runoff reproduced the mean, standard deviation, skewness, and one-lag coefficient of 

autocorrelation, and is recommended for generating time series of autocorrelated lognormally distributed 

Owens Valley runoff. 

 

4.  MLRM were developed for wells V271, 572T, 507T, and V097.  These models had adequate 

regression diagnostics, and may prove useful in developing linkages between indicator wells and 

permanent vegetation monitoring sites. 
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Appendix 1: Regression model data for Laws wellfield indicator wells 

 

This appendix contains data used for development of multiple linear regression models in the Laws 

wellfield using diversions from the Owens River into the McNally canals.  Initial water table is the 

elevation above sea level of the water table measured during April of the year in the first column; 

pumping is runoff-year (April 1 through March 31) pumping for the Laws wellfield (acre feet); 

diversions to canals are the runoff-year diversions from the Owens River into the upper and lower 

McNally canals (acre feet) at the OVPA station; final water table is the water table elevation at the end 

of the runoff year.  The fifth column is regressed against the second, third and fourth columns.  The data 

were provided by LADWP. 
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Monitoring well 107T; RP elevation: 4156.1 ft; Land surface elevation: 4154.8 ft 

Year Initial water table Pumping  Diversions to 
canals 

Final water table 

1972 4126.75 28345 0 4117.09 

1973 4117.09 15974 5234 4119.23 

1976 4126.55 16285 0 4121.95 

1977 4121.95 15038 679 4119.32 

1978 4119.32 945 18367 4126.80 

1979 4126.80 17933 6861 4120.55 

1980 4120.55 1251 29132 4132.28 

1981 4132.28 25313 3290 4121.01 

1982 4121.01 1388 41570 4135.52 

1983 4135.52 1113 32492 4137.25 

1984 4137.25 7403 6589 4134.80 

1985 4134.80 17369 4117 4129.60 

1986 4129.60 8600 28204 4131.90 

1987 4131.90 38241 0 4119.00 

1998 4121.60 483 29410 4132.60 

1999 4132.60 1674 0 4129.60 

2000 4129.60 3975 2435 4127.98 

 

Monitoring well 436T; RP elevation: 4107.5; Land surface elevation: 4106.3 

Year Water table 
elevation 

Pumping  Diversions to 
canals 

Final water table 

1976 4095.23 16285 0 4091.86 

1977 4091.86 15038 679 4090.75 

1978 4090.75 945 18367 4095.60 

1979 4095.60 17933 6861 4093.65 

1980 4093.65 1251 29132 4099.62 

1981 4099.62 25313 3290 4094.73 

1982 4094.73 1388 41570 4102.24 

1983 4102.24 1113 32492 4101.53 

1984 4101.53 7403 6589 4100.00 

1985 4100.00 17369 4117 4097.40 

1986 4097.40 8600 28204 4099.90 

1987 4099.90 38241 0 4094.20 

1988 4094.20 38841 3743 4090.30 

1989 4090.30 34785 173 4088.70 

1993 4089.10 12618 18082 4092.80 

1994 4092.80 16187 26 4092.10 

1995 4092.10 8249 22797 4096.60 

1996 4096.60 11199 0 4094.80 

1997 4094.80 2951 4892 4096.00 

1998 4096.00 483 29410 4100.50 

1999 4100.50 1674 0 4098.70 

2000 4098.70 3975 2435 4098.14 
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Monitoring well 438T; RP elevation: 4142.1 ft; Land surface elevation: 4138.9 ft 

Year Initial water table Pumping  Diversions to 
canals 

Final water table  

1976 4129.44 16285 0 4127.66 

1977 4127.66 15038 679 4126.96 

1978 4126.96 945 18367 4131.21 

1979 4131.21 17933 6861 4128.16 

1980 4128.16 1251 29132 4133.26 

1981 4133.26 25313 3290 4128.09 

1982 4128.09 1388 41570 4136.37 

1983 4136.37 1113 32492 4134.97 

1984 4134.97 7403 6589 4133.2 

1985 4133.2 17369 4117 4131.9 

1986 4131.9 8600 28204 4132.4 

1987 4132.4 38241 0 4125.3 

1988 4125.3 38841 3743 4122.0 

1989 4122.0 34785 173 4122.4 

1990 4122.4 16933 0 4122.9 

1991 4122.9 10949 0 4123.7 

1992 4123.7 10562 0 4124.6 

1993 4124.6 12618 18082 4124.7 

1994 4124.7 16187 26 4124.7 

1995 4124.7 8249 22797 4127.5 

1996 4127.5 11199 0 4126.3 

1997 4126.3 2951 4892 4125.1 

1998 4125.1 483 29410 4131.3 

1999 4131.3 1674 0 4128.1 

2000 4128.1 3975 2435 4130.08 
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Monitoring well 490T;RP elevation: 4078.3 ft; Land surface elevation: 4077.3 ft 

Year Initial water table 
elevation 

Pumping  Diversions to 
McNally canals 

Final water table 
elevation 

1976 4059.85 16285 0 4058.39 

1977 4058.39 15038 679 4057.86 

1978 4057.86 945 18367 4061.81 

1979 4061.81 17933 6861 4061.19 

1980 4061.19 1251 29132 4064.33 

1981 4064.33 25313 3290 4062.48 

1982 4062.48 1388 41570 4067.34 

1983 4067.34 1113 32492 4068.26 

1984 4068.26 7403 6589 4065.0 

1985 4065.0 17369 4117 4063.6 

1986 4063.6 8600 28204 4067.1 

1987 4067.1 38241 0 4064.1 

1988 4064.1 38841 3743 4061.1 

1989 4061.1 34785 173 4058.2 

1990 4058.2 16933 0 4056.9 

1991 4056.9 10949 0 4056.4 

1992 4056.4 10562 0 4056.5 

1993 4056.5 12618 18082 4057.9 

1994 4057.9 16187 26 4058.2 

1995 4058.2 8249 22797 4061.9 

1996 4061.9 11199 0 4061.1 

1997 4061.1 2951 4892 4060.3 

1998 4060.3 483 29410 4062.8 

1999 4062.8 1674 0 4062.0 

2000 4062.0 3975 2435 4063.39 
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Monitoring well 492T; RP elevation: 4130.1 ft; Land surface elevation: 4128.4 ft 

Year Initial water table Pumping  Diversions to 
canals 

Final water table  

1977 4074.47 15038 679 4073.76 

1978 4073.76 945 18367 4093.66 

1979 4093.66 17933 6861 4082.93 

1980 4082.93 1251 29132 4100.18 

1981 4100.18 25313 3290 4086.39 

1982 4086.39 1388 41570 4104.65 

1983 4104.65 1113 32492 4106.91 

1984 4106.91 7403 6589 4102.7 

1985 4102.7 17369 4117 4091.3 

1986 4091.3 8600 28204 4097.7 

1987 4097.7 38241 0 4081.2 

1988 4081.2 38841 3743 4072.5 

1993 4079.6 12618 18082 4088.2 

1994 4088.2 16187 26 4085.8 

1995 4085.8 8249 22797 4092.5 

1996 4092.5 11199 0 4090.0 

1997 4090.0 2951 4892 4093.5 

1998 4093.5 483 29410 4102.9 

1999 4102.9 1674 0 4101.1 

2000 4101.1 3975 2435 4101.05 
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Monitoring well 493T; RP elevation: 4133.2 ft; Land surface elevation: 4131.6 ft 

Year Initial water table Pumping  Diversions to 
canals 

Final water table 

1977 4093.08 15038 679 4090.55 

1978 4090.55 945 18367 4107.35 

1979 4107.35 17933 6861 4102.39 

1980 4102.39 1251 29132 4116.78 

1981 4116.78 25313 3290 4107.12 

1982 4107.12 1388 41570 4122.72 

1983 4122.72 1113 32492 4122.66 

1984 4122.66 7403 6589 4118.6 

1985 4118.6 17369 4117 4110.8 

1986 4110.8 8600 28204 4117.8 

1987 4117.8 38241 0 4103.0 

1988 4103.0 38841 3743 4094.2 

1989 4094.2 34785 173 4082.1 

1990 4082.1 16933 0 4083.7 

1991 4083.7 10949 0 4088.3 

1992 4088.3 10562 0 4087.4 

1993 4087.4 12618 18082 4103.2 

1994 4103.2 16187 26 4097.7 

1995 4097.7 8249 22797 4106.5 

1996 4106.5 11199 0 4100.5 

1997 4100.5 2951 4892 4105.0 

1998 4105.0 483 29410 4118.8 

1999 4118.8 1674 0 4114.2 

2000 4114.2 3975 2435 4112.7 
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Appendix 2.  Owens Valley runoff-year runoff, 1935-1999. 

Runoff year is April 1 - March 31; runoff is in Acre feet.  Data are from LADWP Totals and Means 

Report. 

 
Year Runoff Year Runoff Year Runoff 

1935 384629 1960 216947 1985 428046 
1936 457819 1961 213159 1986 658839 
1937 532759 1962 418832 1987 280785 
1938 765590 1963 465815 1988 258845 
1939 393362 1964 274058 1989 261425 
1940 441898 1965 421265 1990 215375 
1941 648446 1966 300500 1991 265170 
1942 522933 1967 626918 1992 254358 
1943 499464 1968 299331 1993 441197 
1944 365664 1969 885812 1994 276706 
1945 533605 1970 380646 1995 637163 
1946 446090 1971 321921 1996 558815 
1947 334711 1972 276882 1997 513181 
1948 255379 1973 466516 1998 618204 
1949 299956 1974 465125 1999 358652 
1950 324578 1975 377308   

1951 334580 1976 249678   

1952 588953 1977 216567   

1953 328270 1978 648737   

1954 332377 1979 411287   

1955 338978 1980 611023   

1956 507889 1981 351412   

1957 377966 1982 667114   

1958 532461 1983 792511   

1959 266496 1984 502366   
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Figure A2.1.  Owens Valley runoff-year runoff. 
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Appendix 3.  Data for additional regression wells. 

 

Well V271, Laws wellfield; R.P. elevation: 4128.19 ft.; Land surface elevation: 4125.2 ft. 

Year Initial water table Wellfield pumping Diversions to 
Canals 

Final water table 

1972 4097.3 28629 0 4085.9 

1973 4085.9 22514 5234 4094.8 

1974 4094.8 8531 14623 4098.3 

1975 4098.3 8979 7242 4096.8 

1976 4096.8 14923 0 4091.1 

1977 4091.1 15661 679 4090.1 

1978 4090.1 7773 18367 4103.6 

1979 4103.6 6533 6861 4097.1 

1980 4097.1 12511 29132 4112.1 

1981 4112.1 12338 3290 4098.6 

1982 4098.6 14525 41570 4116.5 

1983 4116.5 1038 32492 4113.9 

1984 4113.9 6854 6589 4113.3 

1985 4113.3 10050 4117 4108.0 

1986 4108.0 9953 28204 4106.3 

1987 4106.3 25779 0 4093.2 

1988 4093.2 38025 3743 4080.2 

1989 4080.2 38167 173 4071.2 

1990 4071.2 28019 0 4079.5 

1991 4079.5 13700 0 4086.5 

1992 4086.5 8909 0 4087.8 

1993 4087.8 7601 18082 4096.1 

1994 4096.1 21001 26 4094.0 

1995 4094.0 7040 22797 4100.2 

1996 4100.2 11546 0 4096.6 

1997 4096.6 8349 4892 4102.0 

1998 4102.0 470 29410 4113.6 

1999 4113.6 1697 0 4110.1 

2000 4110.1 3975 2435  
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Well 572T, Big Pine wellfield; R.P. elevation: 3944.54 ft.; Land surface elevation: 3944.3 ft. 

Year Initial water table Wellfield 
pumping 

OV runoff Final water table 

1986 3932.4 25934 658839 3932.4 

1987 3932.4 48663 280785 3926.1 

1988 3926.1 42817 258845 3923.2 

1989 3923.2 33950 261425 3926.2 

1990 3926.2 20005 215375 3926.7 

1991 3926.7 24537 265170 3926.7 

1992 3926.7 24391 254358 3926.9 

1993 3926.9 23061 441197 3930 

1994 3930 24387 276706 3930.8 

1995 3930.8 24972 637163 3933.8 

1996 3933.8 22723 558815 3938.7 

1997 3938.7 24654 513181 3933.44 

1998 3933.44 22645 618204 3936.6 

1999 3936.6 19512 358652 3935.5 

2000 3935.5 25378 341464  

 

Well 507T, Thibaut Sawmill wellfield; R.P. elevation: 3807.35 ft.; Land surface elevation: 
3806.6 ft. 

Year Initial water table Wellfield pumping OV runoff Final water table 
1979 3799.5 10518 411287 3800.2 

1980 3800.2 13087 611023 3801.0 

1981 3801.0 10511 351412 3801.4 

1982 3801.4 10928 667114 3803.0 

1983 3803.0 10698 792511 3803.1 

1984 3803.1 10705 502366 3802.7 

1985 3802.7 12744 428046 3803.3 

1986 3803.3 14522 658839 3802.2 

1987 3802.2 22018 280785 3800.7 

1988 3800.7 20477 258845 3799.2 

1989 3799.2 21930 261425 3798.0 

1990 3798.0 16348 215375 3798.5 

1991 3798.5 18156 265170 3798.2 

1992 3798.2 16550 254358 3798.7 

1993 3798.7 13737 441197 3798.8 

1994 3798.8 14605 276706 3799.1 

1995 3799.1 12528 637163 3800.0 

1996 3800.0 15441 558815 3800.3 

1997 3800.3 18043 513181 3800.7 

1998 3800.7 12940 618204 3801.0 

1999 3801.0 12525 358652 3800.9 

2000 3800.9 12075 341464 3801.04 

2001 3801.04    
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Well V097, Bairs George wellfield; R.P. elevation: 3828.15 ft.; Land surface elevation: 3827.7 
ft. 

Year Initial water table Wellfield 
pumping 

OV runoff Final water table 

1972 3801.0 5673 276882 3790.5 

1973 3790.5 2124 466516 3805.0 

1974 3805.0 1387 465125 3800.9 

1975 3800.9 3702 377308 3797.0 

1976 3797.0 3894 249678 3796.6 

1977 3796.6 5353 216567 3798.9 

1978 3798.9 287 648737 3811.5 

1979 3811.5 2720 411287 3807.4 

1980 3807.4 8 611023 3818.1 

1981 3818.1 2288 351412 3806.1 

1982 3806.1 156 667114 3820.4 

1983 3820.4 3 792511 3822.1 

1984 3822.1 64 502366 3819.3 

1985 3819.3 826 428046 3815.2 

1986 3815.2 1140 658839 3813.9 

1987 3813.9 6485 280785 3800.8 

1988 3800.8 4602 258845 3802.3 

1989 3802.3 3293 261425 3805.5 

1990 3805.5 358 215375 3809.9 

1991 3809.9 231 265170 3812.8 

1992 3812.8 140 254358 3814.0 

1993 3814.0 110 441197 3814.3 

1994 3814.3 246 276706 3814.1 

1995 3814.1 274 637163 3817.2 

1996 3817.2 0 558815 3817.4 

1997 3817.4 48 513181 3817.9 

1998 3817.9 72 618204 3819.2 

1999 3819.2 1 358652 3816.8 

2000 3816.8 157 341464  

 


